Maximizing Network and Storage Performance for
Big Data Analytics

Xiaodong Zhang
Ohio State University

Collaborators
Rubao Lee, Ying Huai, Tian Luo, Yuan Yuan Ohio State University
Yongqiang He and the Data Infrastructure Team, Facebook
Fusheng Wang, Emory University

Zhiwei Xu, Institute of Comp. Tech, Chinese Academy of Sciences

Digital Data Explosion in Human Society

The global storage capacity .
2007
Analog Storage 18.86 billion GB
1986
Analog
2.62 billion GB
Dol.(l);billion PC hafd diSl(é;EJ manE
Digital 123 billion GB™
0.02 billion GB 4014d5°/50
/ Digital
Digital Storage ¥ 276.12 billion GB
s DIGIT:SL 12 billion gigabytes

mmes® Amount of digital information

Analos Cteated and replicated in a year
s Growing by a Factor of 44

Exabytes: Documenting the 'digital age' and huge growth in computing capacity,

The Washington Post

Challenge of Big Data Management and Analytics (1)

4 Existing DB technology is not prepared for the huge volume

Until 2007, Facebook had a 15TB data warehouse by a big-DBMS-vendor
Now, ~70TB compressed data added into Facebook data warehouse every
day (4x total capacity of its data warehouse in 2007)

Commercial parallel DBs rarely have 100+ nodes

Yahoo!’s Hadoop cluster has 4000+ nodes; Facebook’s data warehouse has
2750+ nodes

Typical science and medical research examples:
— Large Hadron Collider at CERIN generates over 15 PB of data per year
— Pathology Analytical Imaging Standards databases at Emory reaches 7TB, going to PB
— LANL Turbulence Simulation: processing the amount of data at PB level.

Challenge of Big Data Management and Analytics (2)

U Big data is about all kinds of data

* Online services (social networks, retailers ...) focus on big data of
online and off-line click-stream for deep analytics

* Medical image analytics are crucial to both biomedical research
and clinical diagnosis

d Complex analytics to gain deep insights from big data
* Data mining
* Pattern recognition
* Data fusion and integration
* Time series analysis

* Goal: gain deep insights and new knowledge

Challenge of Big Data Management and Analytics (3-4)

[Conventional database business model is not affordable
* Expensive software license
* High maintenance fees even for open source DBs
* Store and manage data in a system at least $10,000/TB"
* In contrast, Hadoop-like systems only cost $1,500/TB™

1 Conventional database processing model is “scale-up” based

* Performance improvement relies on CPU/memory/storage/network
updates 1n a dedicated site (BSP model, CACM, 1990)

* Big data processing model is “scale-out” based (DOT model, SOCC’11):

MapReduce programming model becomes an

effective data processing engine for big data analytics

Why MapReduce?

A simple but effective programming model designed to process
huge volumes of data concurrently

1 Two unique properties
* Minimum dependency among tasks (almost sharing nothing)

* Simple task operations in each node (low cost machines are sufficient)

d Two strong merits for big data anaytics
* Scalability (Amadal’s Law): increase throughput by increasing # of nodes

* Fault-tolerance (quick and low cost recovery of the failures of tasks)

d Hadoop is the most widely used implementation of MapReduce

* in hundreds of society-dependent corporations/organizations for big data
analytics: AOL, Baidu, EBay, Facebook, IBM, NY Times, Yahoo!

MapReduce Overview

] The basic framework comes from functional programming:
simple key/value pairs forms a chain of MR execution

Q Map: (k1, v1) > (K2, v2)
O Reduce: (k2, v2) 2 (k3, v3)

1 Shuffle: Partition Key (It could be the same as k2, or not)

* Partition Key: to determine how a key/value pair in the map output
be transtferred to a reduce task

MR(Hadoop) Job Execution Insights

Map Tasks MR program (job) The execution of

@ Reduce Tasks o a MR job involves
gosnttéol éevel work, e.g.

job scheduling and task
assignment

Data is stored in a I 1: Job submission
Distributed File System
(e.g. Hadoop Distributed

File System

NS Master node

Worker nodes

* 0.

"“I 2: Assign Tasksj.

~_

Do data processing
work specified by Map
or Reduce Function

MR(Hadoop) Job Execution Insights

Map Tasks MR program The execution of
@ Reduce Tasks o a MR job involves
6 steps

I 1: Job submission I

Map output
Master node
Worker nod Worker nodes
7—

Map output will be shuffled to

different reduce tasks based on
I 4: Shuffle phase I Partition Keys (PKs) (usually
Map output keys) 9

3: Map phase
Concurrent tasks

MR(Hadoop) Job Execution Insights

Map Tasks MR program The execution of

@ Reduce Tasks o a MR job involves
6 steps

: | 1: Job submission |

6: Output will be stored back
g Master node to Distributed File System
Worker nodes

Reduce output
5: Reduce phase
Concurrent tasks .

Worker nod

3: Map phase

I 4: Shuffle phase I
Concurrent tasks

MRSHadooE! !ob Execution Insights

' Map Tasks MR program The execution of
@ Reduce Tasks E a MR job involves

. — 6 steps
- I 1: Job submission I

6: Output will be stored back
Master node to Distributed File System
. Worker nodes

X
<

A MapReduce (MR) job is highly resource-consuming:
1: Input data scan in the Map phase => local or remote I/Os

2: Store intermediate results of Map output => local I/Os

3: Transfer data across in the Shuffle phase => network costs
4: Store final results of this MR job => local I/Os + network
costs (replicate data)

Two Critical Challenges in Production Systems

d Background: Standard Relational Databases have been moved to

MapReduce Environment, such as Hive and Pig by Facebook and
Yahoo!

J Challenge 1: How to initially store big data in distributed systems

* Objective: to minimize network and storage costs for massive accesses

J Challenge 2: How to automatically convert relational database
queries into MapReduce jobs

* Objectives: to minimize network and storage costs for MR job execution

J Addressing these two Challenges, we aim to achieve
* High performance of big data analytics
* High productivity of big data analytics

Challenge 1: Fast and Storage-efficient Data Placement

d Data loading (L)

* the overhead of writing data to distributed files ystem and local disks

d Query processing (P)
* local storage bandwidths of query processing

* the amount of network transfers

1 Storage space utilization (S)
* Data compression ratio

* The convenience of applying efficient compression algorithms

 Adaptivity to dynamic workload patterns (W)

* Additional overhead on certain queries

»Obijective: to design and implement a data placement structure

meeting these requirements in MapReduce-based data warehouses

Initial Stores of Big Data in Distributed Environment

HDFS Blocks NameNode

Store Block 1
Store Block 2

Store Block 3 %\

DataNode 1 DataNode 2 DataNode 3

d HDFS (Hadoop Distributed File System) blocks are distributed

 Users have a limited ability to specify customized data placement policy

* e.g. to specify which blocks should be co-located

d Minimizing I/O costs in local disks and intra network communication

° ® L
MR programming is not that “simple”’!
public static class Reduce extends Reducer<IntWritable,Text, Writable, Text> {
private Text result = new Text();

public void reduce(IntWritable key, Iterable<Text> values,
package tpch; Context context
import java.io.IOException;) throws IOException, InterruptedException {
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration; double sumQuantity = 0.0;

import a he . had f.Configqured IntWritable newKe new IntWritable();

import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;

= 1IeSplit)context.getlnputsp
(inputFile.compareTo ("lineitem.tbl") == 0) {
isLineitem = true;

Do you miss some thing like ...

“SELECT * FROM Book WHERE price > 100.00”?

1on
int res = ToolRunner.run(new Configuration(), new Q18Jobl (), args);
System.exit (res);

Challenge 2: High Quality MapReduce in Automation

A job description in SQL-like declarative language

A interface between users

Write MR and MR programs (jobs)

programs (jobs)

Workers

Hadoop Distributed File System (HDEFES) »

Challenge 2: High Quality MapReduce in Automation

A job description in SQL-like declarative language

A interface between users

. SQL-to-MapReduce
Write MR Q p and MR programs (jobs)

programs (jobs) Translator

; A data warehousing % A high-level programming

system (Facebook) ® 1 environment (Yahoo!)

Improve productivity from hand-coding MapReduce programs
* 95%+ Hadoop jobs in Facebook are generated by Hive

* 75%+ Hadoop jobs in Yahoo! are invoked by Pig*

Outline

J RCFile: a fast and space-efficient placement structure

* Re-examination of existing structures
e A Mathematical model as basis of RCFile

* Experiment results

J Ysmart: a high efficient query-to-MapReduce translator

* Correlations-aware is the key
* Fundamental Rules in the translation process

* Experiment results
d Impact of RCFile and Ysmart in production systems

(] Conclusion

Row-Store: Merits/Limits with MapReduce

Table
A B C D HDFS Blocks
101 (201 |301 (401 Store Block 1
102 |202 |302 (402 Store Block 2
103 |203 |303 (403 Store Block 3
104 |204 |304 (404

205

»Data loading is fast (no additional processing);

» All columns of a data row are located in the same HDFS block

» Not all columns are used (unnecessary storage bandwidth)
» Compression of different types may add additional overhead

Column-Store: Merits/Limits with MapReduce

Table

B

C

101

201

301

401

102

202

302

402

103

203

303

403

104

204

304

404

105

205

305

405

HDFS Blocks
Store Block 1
Store Block 2

Store Block 3

20

Column-Store: Merits/Limits with MapReduce

Column group 1

A [Column groug HDFS Blocks
101 Column group 3 Store Block 1
102 201 C D Store Block 2
3 | 1202 | [301 [401 Store Block 3
104 203 302 |402
105 204 303 |403

205 304 |404

»Unnecessary I/O costs can be avoided:

Only needed columns are loaded, and easy compression
» Additional network transfers for column grouping

Optimization of Data Placement Structure

 Consider four processing requirements comprehensively

d The optimization problem in systems design becomes:

* In a environment of dynamic workload (W) and with a suitable
data compression algorithm (S) to improve the utilization of
data storage,

find a data placement structure (DPS) that minimizes the

processing time of a basic operation (OP) on a table (T) with #
columns

d Two basic operations
* Write: the essential operation of data loading (L)

* Read: the essential operation of query processing (P)

Finding Optimal Data Placement Structure

E(read | DPS) =

29 £, j,n)(BS L x t(DPS) + MDPS.i, j.n)x—>—x 1)
=1 j=1 n

local p netwotk
Row-Store Column-store Ideal
Read efficiency 1 i/n(optimal) i/n(optimal)
Communication s 0 (optimal)
0 (optimal) | (0%=< £<100% P
overhead

Can we find a Data Placement Structure with both optimal rezd

efficiency and communication overhead ?

Goals of RCFile

d Eliminate unnecessary I/O costs like Column-store

* Only read needed columns from disks
 Eliminate network costs in row construction like Row-store
 Keep the fast data loading speed of Row-store

1 Can apply efficient data compression algorithms
conveniently like Column-store

J Eliminate all the limits of Row-store and Column-store

RCPFile: Partitioning a Table into Row Groups

A HDFS block consists of one

Table or multiple row groups
A |B |c |D HDFS Blocks
.Row|Group ... Store Block 1
101 |201 |301 |401 Store Block 2

102 |202 |302 |402 Store Block 3
103 203 |303 |403 Store Block 4
104 |204 |304 |404
105 205 |305 |405

25

RCPFile: Distributed Row-Group Data among Nodes

For example, each HDFS block has three row groups

HDFS Block
> Blocks NameNode
Store Block 1
Store Block 2
Store Block 3 |
P
$
l
Row Group 1-3 Row Group 4-6 Row Group 7-9

DataNode 1 DataNode 2 DataNode 3

Inside a Row Group

Metadata

101 |201 |301 |[401

102 | 202 |[302 |402

103 203 |303 |403

104 |204 |304 |404

105 |205 |305 |405

27

Inside a Row Group

Metadata

101 |201 |301 |[401

102 | 202 |[302 |402

103 203 |303 |403

104 |204 |304 |404

105 |205 |305 |405

28

RCFile: Inside each Row Group

101 ompressed Co . .:
102 0 0 0 04
103 | (291 S—
202
104 301 () () () ()4
203
105 200 E——
204 401
() (()4
205 | 1393 | |402 — '
304 | (203
410 410 410 404
305 | 1404
405

Benefits of RCFile

1 Eliminate unnecessary I/O costs
* Ina row group, table is partitioned by columns

* Only read needed columns from disks

1 Eliminate network costs in row construction

 All columns of a row are located in the same HDFS block

d Comparable data loading speed to Row-Store

* Only adding a vertical-partitioning operation in the data loading
procedure of Row-Store

d Can apply efficient data compression algorithms
conveniently

* Can use compression schemes used in Column-store

Expected Time of a Read Operation

E(read | DPS) =

S

Zg 7, j,n)\ S] x ot(DPS) + A(DPS,i, j,n)x
=1 =1 B P

local

I
X_
B n)

netwotk

Row-Store | Column-store

Read efficiency 1 i/n (optimal)

B
0 (optimal) | (0%= 5 <100%

)

Communicatio
n overhead

Expected Time of a Read Operation

E(read | DPS) =

S

Zg 7, j,n)\ S] x ot(DPS) + A(DPS,i, j,n)x
=1 =1 B P

local

]
X_
B n)

netwotk

Row-Store | Column-store RCFile

Read efficiency 1 i/n (optimal) i/n (optimal)

/4 |
0 (optimal) | (0%< B<100% | 0 (optimal)

)

Communicatio
n overhead

Facebook Data Analytics Workloads Managed By RCFile

4 Reporting
* E.g. daily/weekly aggregations of impression/click counts

1 Ad hoc analysis

* E.g. geographical distributions and activities of users in the world

1 Machine learning

* E.g online advertizing optimization and effectiveness studies
1 Many other data analysis tasks on user behavior and patterns
 User workloads and related analysis cannot be published

] RCFile evaluation with public available workloads with excellent
performance (ICDE’11)

RCPFile in Facebook

The interface to)
500+ million users

Capacity:

RCFile Data 21PB il’l May, 2010
30PB+ today
g cos Warehouse
O O O)

o)
Picture source: Visualizing Friendships, http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Summary of RCFile

d Data placement structure lays a foundation for MapReduce-based big
data analytics

d Our optimization model shows RCFile meets all basic requirements

d RCFile: an operational system for daily tasks of big data analytics
* A part of Hive, a data warehouse infrastructure on top of Hadoop.

* A default option for Facebook data warehouse

* Has been integrated into Apache Pig since version 0.7.0 (expressing data analytics
tasks and producing MapReduce programs)

* Customized RCFile systems for special applications

 Refining RCFile and optimization model, making RCFile as a standard
data placement structure for big data analytics

Outline

J RCEile-afastand space-efficient placementstrueture
. T L ot
. A Mad] Ll as basicof RCE
* Hxpertmentresults
J Ysmart: a high efficient query-to-MapReduce translator
* Correlations-aware is the key

* Fundamental Rules in the translation process

* Experiment results
d Impact of RCFile and Ysmart in production systems

(1 Conclusion

Translating SQL-like Queries to MapReduce
Jobs: Existing Approach

[“Sentence by sentence” translation

* |[C. Olston et al. SIGMOD 2008], [A. Gates et al., VLDB 2009] and [A.
Thusoo et al., ICDE2010]

* Implementation: Hive and Pig

U Three steps
* Identify major sentences with operations that shuffle the data
— Such as: Join, Group by and Order by

* For every operation in the major sentence that shuffles the data, a
corresponding MR job is generated

— e.g. a join op. => a join MR job
* Add other operations, such as selection and projection, into
corresponding MR jobs

Existing SQL-to-MapReduce translators give unacceptable

performance.

An Example: TPC-H Q21

d One of the most complex and time-consuming queries in the
TPC-H benchmark for data warehousing performance
JOptimized MR Jobs vs. Hive in a Facebook production cluster

¥ Optimized MR Jobs ¥ Hive
160

140

p—
(\®)
(e

(B8]

~J
i

100

=N
e

NN
o

Execution time (min)
®
S

What’s wrong?

The Execution Plan of TPC-H Q21

The only difference: SORT
Hive handle this sub-tree in a
different way with the
optimized MR jobs

It’s the dominat\gd part on time

(~90% of executib\n time)

Left-outer-

Join Join3

supplier nation

Join1 AGG1 AGG2

" 4 M A\ A\
| lineitem orders lineitem lineitem [39

C O AJOIN MR Job

However, inter-job correlations exist.
Let’s look at the Partition Key /\ An AGG MR Job

Key: 1_orderkey

A Table

A Composite MR Job
~

Key: 1_orderkey ~

~

Key: 1_orderkey

Key: 1_orderkey Key: 1_orderkey

lineitem lineitem lineitem

orders

1 to J5 all use the same partition key ‘1_orderkey’

What’s wrong with existing SQL-to-MR translators?

Existing translators are correlation-unaware
1. Ignore common data input
2. Ignore common data transition

Our Approaches and Critical Challenges

Correlation-aware

SLOJESGEVIRIER I BT MR Jobs for best

SQL-like queries performance

/

1: Correlation possibilities
and detection

Primitive Identify
MR Jobs Correlations

A
V

3: Implement high-performance

2: Rules for automatically and low-overhead MR jobs
exploiting correlations

Query Optimization Rules for

Automaticallz EXEIOiting Correlations

d Exploiting both Input Correlation and Transit Correlation

 Exploiting the Job Flow Correlation associated with
Aggregation jobs

d Exploiting the Job Flow Correlation associated with JOIN
jobs and their Transit Correlated parents jobs

d Exploiting the Job Flow Correlation associated with JOIN
jobs

Expl: Four Cases of TPC-H Q21

1: Sentence-to-Sentence Translation 2: InputCorrelation+TransitCorrelation
* 5 MR jobs *3N

Left-
outer-Join

Left-outer-
Join

lineitem orders lineitem lineitem
3: InputCorrelation+TransitCorrelation+
JobFlowCorrelation _»” 4 Hand-coding (similar with Case 3)
*1 MR job ,¢’ * In reduce function, we optimize code
 a

according query semantic

lineitem orders

lineitem 43

Breakdowns of Execution Time (sec)

1200

1000

800

600

400

200

Job5 Reduce
Job5 Map
From totally 888sec to 510sec :}ggj ll\lflea(;)uce
Job3 Reduce
ob3 Ma
\ From totally 768sec to 567sec m :}obZ Re c{)uce
! Job2 Map
‘\ ¥ Job1 Reduce
1 \ ¥ Jobl Map
\
‘| \\ Only 17% difference
1 \“
WA \
\\
-
V4

No Correlation

Input Correlation
Transit Correlation

Input Correlation Hand-Coding

Transit Correlation

JobFlow Correlation

Exp2: Clickstream Analysis

A typical query 1n production clickstream analysis: “what is the
average number of pages a user visits between a page in category
Xand a page in category Y '?”

In YSmart JOIN1, AGG1, AGG2, JOIN2 and
AGG3 are executed in a single MR job

800

in)
\]
=
S

600
500
400 -
300
200

Clicks

Execution time (m

[N
S
o)

(o)
|

Clicks Clicks

YSmart Hive Pig 45

YSmart in the Hadoop Ecosystem

See patch
HIVE-2206 at
apache.org

Hadoop Distributed File System (HDEFES)

Summary of YSmary

d YSmart is a correlation-aware SQL-to-MapReduce translator
d Ysmart can outperform Hive by 4.8x, and Pig by 8.4x
d YSmart is being integrated into Hive

(] The individual version of YSmart will be released soon

(AN

Translate SQL-like queries to
MapReduce jobs

A Hadoop-powered
Data Warehousing
System

RCPFile Data

Web servers

48

Conclusion

d We have contributed two important system components:
RCFile and Ysmart in the critical path of Big Data analytics
Ecosystem.

1 The ecosystem of Hadoop-based big data analytics is created:
Hive and Pig, will soon merge into an unified system

 RCFile and Ysmart are in the critical path in such a new
Ecosystem.

Thank You!

